
Report on Base Level 1 of the Retargetable Back End PE-TI-1165

DATE:

TO:

FROM:

SUBJECT:

REFERENCE:

KEYWORDS:

February 9, 1984

RD&E Personnel

David Spector, Retargetable Back End Project

Report on Base Level 1 of the Retargetable Back End

PE-TI-1008

LANGUAGES, COMPILERS, CODE GENERATION, PARSING, RBE

ABSTRACT

The Retargetable Back End (RBE) project of the Translator Department
aims at producing a generalized table-driven code generator that will
make it easy to create compilers for a variety of new and existing
hardware architectures, including V-Mode, X-Mode, M68000, etc.

en demonstrated by the writing of
The first was known as DEMO and'was
d is known as RBE Base Level 1, and
e DEMO used LR parsing, Base Level 1
lud ing the use of t ree pars ing,
ter and memory temporary allocation,
than did DEMO, runs much faster, and
grams. Although this prototype is
y to be used in actual compilers, it
which we are attempting to develop a
c o d e g e n e r a t o r . T h i s d o c u m e n t
to type code genera to r in de ta i l ,
output. Background informat ion on
problem and how the Graham-Glanville
found in PE-TI -1008, our ear l ie r

The feas ib i l i t y of this goal has be
two prototype ciode generators.
described in PE-•TI-1008. The secon
is described ini this PE-TI. Wher
features a number of extensions ine
integrated cost analysis and regis
and consequently' emits better code
handles a wider range of source pro
as yet too limi.ted in functionali t
provides us witht a base level from
produc t i on -qua l i, t y re ta rge tab le
descr ibes the Base Level 1 pro
inc lud ing br ie f examples of actual
the nature of the code generation
method provides a solution may be
r e p o r t .
Please direct questions to Scott Turner, ext. 4073,
MS 10C-17-3, or to any other member of the RBE Group.

x.mail TURNER,

Under no circumstances is this document, or PE-TI-1003, to be
distributed to anyone other than the recipient. The subject matter
includes company sensitive topics. Only RD&E Personnel are to see
this document.

This is also RBE project document RBE.73-DOC.

©Prime Computer, Inc., 1984
All Rights Reserved

PRIME RD&E RESTRICTED

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

Table of Contents

1 I n t r o d u c t i o n 4

2 L i m i t a t i o n s o f B a s e L e v e l 1 4

3 E x a m p l e s 5
3 . 1 S P L t o V - M o d e 5
3 . 2 F 7 7 t o V - M o d e 5
3 . 3 S P L t o X - M o d e 5

4 C o d e S e l e c t i o n b y P a r s i n g 6
4 . 1 L R P a r s i n g 7
4 . 2 T h e G r a h a m - G l a n v i l l e M e t h o d 7
4 . 3 D e t a i l s o f t h e G r a h a m - G l a n v i l l e m e t h o d 8
4 . 4 T u r n e r ' s U p - D o w n T r e e P a r s i n g 8

5 A n O v e r v i e w o f R B E M e t h o d s a n d A l g o r i t h m s 9
5 . 1 P r e p r o c e s s i n g 9
5 . 2 C o d e G e n e r a t i o n 9

. 5 . 2 . 1 T h e S h a p e r 9
5 . 2 . 2 D e c o r a t e P a s s 9
5 . 2 . 3 S e l e c t P a s s 1 0
5 . 2 . 4 M a c r o P a s s 1 0

5 . 3 R e g i s t e r A l l o c a t i o n 1 0
5 . 4 T e m p o r a r y A l l o c a t i o n 1 0
5 . 5 I n t e r n a l T a b l e s 1 1

6 E x t e r n a l T a b l e s 1 1
6 . 1 I n t e r m e d i a t e L a n g u a g e D e fi n i t i o n 1 1
6 . 2 M a c h i n e D e s c r i p t i o n 1 2

7 D e v e l o p m e n t E n v i r o n m e n t • 1 3
7 . 1 C o d i n g S t a n d a r d s 1 3
7 . 2 M o d u l a r i z a t i o n 1 3
7 . 3 S D T 1 4
7 . 4 D e s i g n R e v i e w s 1 4
7 . 5 C o d e A u d i t s 1 4

8 E v a l u a t i o n o f R B E B a s e L e v e l 1 1 4
8 . 1 E v a l u a t i o n A r e a s 1 4
8 . 2 C o n c l u s i o n s 1 5

9 A c k n o w l e d g m e n t s 1 7

P R I M E R D & E R E S T R I C T E D P a g e

* «

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

1 0 B i b l i o g r a p h y 1 7

P R I M E R D & E R E S T R I C T E D P a g e 3

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

1 In t roduc t ion

The RBE project is using a table-driven approach to code generation in
which there is a separation between the data and algorithms that are
independent of the target architecture from those that are dependent on
it, making the code generator much easier to organize, understand,
modify, and retarget.

The feasibility of this goal has been demonstrated by the writing of a
prototype code generator, known as RBE Base Level 1, using the
Graham-Glanville method of code generation, extended by the use of tree
pars ing , inher i ted and syn thes ized a t t r ibu tes , and an in tegra ted
mechanism for doing cost analysis, register allocation, and memory
temporary allocation. This prototype provides us with a base level
f r om wh ich we a re a t t emp t i ng to deve lop a p roduc t i on -qua l i t y
retargetable code generator.

The Base Level 1 prototype accepts symbol table and operator files, as
produced by F77 or SPL using the -LEAVE option, and displays a
human-readable representation (similar to assembler language) of the
machine code produced. No binary or executable output is supported.

The prototype code generator is built for a particular machine by the
RBE Preprocessor, RBE_PREP, from files defining the Intermediate
Language and the machine for which the code generator is to be
targeted. Building a code generator can take several hours of computer
time; this is reasonable. Running the resulting code generator can
also take a great deal of computer time; this is not reasonable, but
is a result of only one particular aspect of what the code generator is
doing (very careful register allocation and cost analysis) and will be
improved. Eventually, an RBE-based compiler is expected to execute in
a time comparable with or better than that required for compilers using
Prime's current Common Back End.

2 Limitations of Base Level 1

The Base Level 1 prototype is suitable only for experimental use
because of these major limitations:

1. Only assignment statements are supported.

2. Only arithmetic datatypes are supported.

3. It runs very slowly.
4. Neither .BIN files nor .RUN files are produced.

These l imitations have allowed us to develop the prototype more
q u i c k l y.

P R I M E R D & E R E S T R I C T E D P a g e

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

3 Examples

Note that additional examples showing code for a variety of target
machines may be found in PE-TI-1008.

3.1 SPL to V-Mode
a [fixed bin (15)] = a - 1;

L D A S B $ + 4 3 A
S1A
S T A S B % + 4 3 A

3.2 F77 to V-Mode

This example was compiled by F77 with -INTS, and with RBE warning
messages removed.

D(I) = S(I)*T(K)

FLX SB^+44
FLD SB%+244,X
FLX SB%+45
FMP SB%+444,XFLX SB56+44
FST SB%+44,X

so
K
T O
I
DO

3-3 SPL to X-Mode

Here is an example of X-Mode code for a source program using pointers
and arrays:

pstruct: proc;
del (p1,p2,p3,p4) pointer;
del (a,b,c,d) fixed bin (15);
del (ap,bp,cp,dp) fixed bin (15) based;
del ar1(100) fixed bin (15);
del ar1p(100) fixed bin (15) based;
del 1 bstruc based,

2 fxb15 fixed bin (15) ,
2 fxb31 fixed bin (3D ,
2 flb23 float bin (23),
2 flb47 float bin (47);

del struc like bstruc:

P R I M E R D & E R E S T R I C T E D P a g e

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

P1 = P3;a * c o d e *
l d b r X B 4 , S B + 1 5 2 / * P 3
s t b r X B 4 , S B + 1 4 6 / * P 1

* *
p4 = addr(ar1(c));* c o d e *
l d h G R 0 , S B + 4 4 / * C
e a b r X B 4 , S B + 4 5 / * A R 1
adbr XB4,GR0
s t b r X B 4 , S B + 1 5 5 / * P 4

* *
a = p1->ap + p2->bp;

* c o d e *
l d h G R 0 , S B + 1 4 9 , § / * P 2
a d h G R 0 , S B + 1 4 6 , @ / * P 1
s t h x G R 0 , S B + 4 5 / * A

* *
p1->ap = ar1(40);a * c o d e *
l d h G R 0 , S B + 8 5 / * A R 1
s t h x G R 0 , S B + 1 4 6 , @ / * P 1

* *
ar1(p4->cp) = p2->ar1p(d);* c o d e *
l d h G R 0 , S B + 4 3 / * D
d c r G R O
l d h ■ G R 0 , S B + 1 4 9 , @ , (G R 0) / * P 2
l d h G R 1 , S B + 1 5 5 , § / * P 4
s t h x G R 0 , S B + 4 5 , (G R 1) / * A R 1

* *
p2->bstruc.flb23 = struc.flb47 / 23;a * c o d e *
I d G R O , 2 3
fi t F P R 0 , G R 0
f r d v d F P R O , S B + 1 6 3 / * S T R U C . F L B 4 7
l d b r X B 4 , S B + 1 4 9 / * P 2
f s t s F P R 0 , X B 4 + 3 / * B S T R U C . F L B 2 3 0

* *
end;

4 Code Selection by Parsing

P R I M E R D & E R E S T R I C T E D P a g e

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

4.1 LR Parsing

The recognition of the constructs of any language, be it PL/I, FORTRAN,
or any other, is conveniently and efficiently done in compiler front
e n d s v i a t a b l e - d r i v e n p a r s i n g m e t h o d o l o g y. A n e x a m p l e o f a
table-driven parser here at Prime is DEREMER (see PE-T-535) , which
recognizes constructs in a language by preprocessing a BNF (Backus-Naur
Form) description file to produce compact tables that are used to drive
an LR parser. An LR parser is a program that recognizes language
constructs in a bottom-up fashion. For example, we might define a
fragment of a programming language involving parenthesized expressions
using the following BNF production:

expression ::= terra ' expression '+♦ term i '(' expression ')'

This means that an expression can consist either of a term, the sum of
an expression and a term, or a parenthesized expression. An LR parser
driven by tables constructed from this production would examine its
input (from the source language file) and decide which of the three
alternatives of the production apply (if none apply, either another
production applies or a user syntax error has occurred). The parser
recognizes the constructs described on the right-hand side of the
production first, then the production as a whole is recognized. This
results in a bottom-up parse because the low-level constructs are
recognized before the h igh- level ones (a h igh- level const ruct is
defined in terms of low-level ones, as we see in the sample production
above).

4.2 The Graham-Glanville Method

R. S. Glanville and S. L. Graham of the University of California -
Berkeley realized that LR parsing could be applied to the Intermediate
Representation of a user program (in the form of a tree of data
structures) just as easi ly as to the user program i tsel f . Code
generation by parsing is just as fast, free of bugs, and easy to change
as any other LR parsing application.

M. Ganapathi of the University of Wisconsin - Madison extended the
Graham-Glanville method to make it handle more of the code generation
task and to do it in a more flexible way by adding attributes,
predicates, and actions. These details will be omitted here in order
to simplify the presentation.

A b ib l iography on the Graham-Glanv i l le method and Ganapath i fs
extensions is provided at the end of this paper.

P R I M E R D & E R E S T R I C T E D P a g e

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

4.3 Details of the Graham-Glanville method

The Graham-Glanville method requires viewing the IR as a sequence of
prefix operators and their operands. Thus a source language statement
such as b + c" is viewed in its prefix form as "= a + b c' LR
parsing then decomposes the IR into pieces corresponding to particular
machine instruct ions.

As an example, consider the IR statement "= a + b c" just mentioned. A
typical Graham-Glanville code generator would parse this into three
pieces, corresponding to the desired instruction sequence

LDA b
ADD c
STA a

Load b into a register.
Add c to the register.
Store the register into a

The three productions that would be recognized might look as follows:

expression
expression
statement

:= memory_reference
:= + expression memory_reference
= '=♦ memory reference expression

Since each product ion must be assoc ia ted wi th the appropr ia te
instruction to be emitted, productions are expanded into onductions
containing the instructions, their cost (this is used to help guide the
parse when alternative parses exist), and other relevant information
such as Boo lean exp ress ions rep resen t i ng seman t i c r es t r i c t i ons
(example: recognize an increment instruction only when the operand is
a constant having the value 1). A simplified set of onductions for the
example might look as follows:

expression
expression
statement

:= memory_reference
:= + expression raemory_reference
= '=' memory reference expression

LDA meraory_reference
ADD memory_reference
STA memory reference

The "memory reference" identifiers in these instruction templates refer
to a value- (called an attribute) associated with the symbol of that
name in the production. Here the attributes are used to propagate text
strings representing the memory reference portions of the instructions.

4.4 Turner's Up-Down Tree Parsing

In order to avoid certain situations where LR parsing commits too early
to a particular production, it turns out to be more flexible to parse
in a tree-oriented manner. Scott Turner has developed a method, called
up-down parsing that accomplishes this. Prime is currently applying
for a patent on his method, and we are also writing a paper on code
generation by tree parsing that we hope will be accepted for the
SIGPLAN '84 Compiler Construction Conference, to be held in Montreal.

PRIME RD&E RESTRICTED Page

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

Our implementation of up-down parsing uses a grammar that is identical
in appearance to LR grammars; this is accomplished by using the fact
that expression trees are equivalent to prefix expressions.

5 An Overview of RBE Methods and Algorithms

This section describes the methods and algorithms used by the RBE
prototype. Further details can be obtained from the RBE User Manual
(RBE>D0OMANUAL.D0C, which is expected to be written soon), from the
RBE detailed internal design document (RBE>DESIGN>RBE_DESIGN.DOC), or
from the 80 memos containing discussions of most aspects of RBE
(contained in the directory RBE>D0C and indexed in RBE>D0OINDEX.D0C) .

5.1 Preprocessing

The RBE Preprocessor, RBE_PREP, analyzes the Intermediate Language
Defini t ion (ILD) fi le and the Machine Descr ip t ion (MD) fi le and
produces a number of SPL data declaration and procedure source files
that become a part of RBE for the particular machine being targeted.

5.2 Code Generation

5.2.1 The Shaper

A procedure called The Shaper is used as an interface to convert the
TSI intermediate representation (IR) currently produced by our front
ends into the IR we have defined for RBE. Our IR is a true tree
structure, and is defined by an ILD file.

5.2.2 Decorate Pass

The first actual pass over the IR operates bottom-up. Each node is
annotated with several pieces of information calculated at this time.

The main annotation is an integer representing the state of the node
with respect to up-down parsing. This state integer represents the set
of grammar productions that could be recognized (selected) at this
parsing point.
The other important annotation is the cost of selecting each possible
production. The cost represents either the space or time requirements
of the code to be emitted (this code is indicated by the macro
associated with the production). This cost information is stored as a

P R I M E R D & E R E S T R I C T E D P a g e <

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

pair of integers, representing the costs associated with each of two
d i f fe ren t ex t reme s i tua t ions tha t cou ld occur. The fi rs t i s tha t
registers can be allocated for the computation represented by the
subtree rooted at this node without running out of registers. The
s e c o n d i s t h a t t h e r e a r e i n s u f fi c i e n t r e g i s t e r s f o r s u c c e s s f u l
allocation and that some values will have to be spilled into memory
temporaries. The choice of which situation obtains (which amounts to
what is usually known as register allocation) is done in the Decorate
Pass and recorded in the annotation of the node.

5.2.3 Select Pass

The second pass over the IR operates top-down. The information left at
each node by the Decorate pass is used to construct a parse tree.
Selection of the cheapest production and register allocation situation
is done, guided by this information. Information is stored in the
parse tree concerning the order in which to emit the instructions and
their components, such as operands of particular addressing modes.
Registers are allocated a second time and specific register numbers
recorded in the parse tree nodes.

5.2.4 Macro Pass

The third pass operates over the parse tree, not the IR. Each node is
scanned in emission order, and macro procedures associated with its
production are invoked to emit an instruction or a component of an
instruction. Macros specify the construction of character strings, and
can include references to inherited and synthesized attributes stored
in the parse tree.

5.3 Register Al locat ion

Registers are allocated essentially by trying many combinations of
allocations and choosing the best; since this process occurs during
parsing, the emitted code is locally least-cost (where cost may either
be with respect to time or size).

5.4 Temporary Allocation

Storing and loading of memory temporaries is specified in the machine
grammar in the MD file; how to do the allocation is specified in a
special Temp Macro also located in the MD file.

P R I M E R D & E R E S T R I C T E D P a g e 1 0

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

5.5 Internal Tables

The RBE preprocessor creates a number of SPL data declaration and
p r o c e d u r e fi l e s t h a t a r e c o m p i l e d a n d l i n k e d w i t h t h e
machine-independent portion of RBE when a particular RBE code generator
is built. These include files to define the grammar symbols, IR tree
nodes, macros, and parse state transitions.
The sizes of the machine-specific data tables were approximately as
follows (in 16-bit words):

V-Mode
71864

X-Mode
59565

6 External Tables

RBE is a set of tools that is targeted for a particular machine by
means of two human-readable tables.

6.1 Intermediate Language Definition

The ILD file defines the set of all possible source file intermediate
representations. It contains sections to define the datatypes, data
representations, and operators to be represented in IR trees.
Here is a stripped-down version of our ILD file:

%Types
{
(Type
{
{address;
{ i n t e g e r ;
r e a l ;
{ s tm t ;

Meaning

{Address or pointer to anywhere in memory (predefined)}
{Fixed binary number (predefined)}
{All real numeric representations other than integer}
{Source statement (predefined)}

%Representations
{
{Rep Base Type Size(Bits) Meaning, Constraints

in t16 in teger 16
i n t 3 2 in teger 32
real32VI r e a l 32
real64VI r e a l 64

{Fixed binary number}
{Fixed binary number}
{Float binary number}
{Float binary number}

%Alt_Representations
int16 < int32
real32VI < real64VI;

^Operators

PRIME RD&E RESTRICTED Page 11

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

Format:
result type

in teger

r e a l
r e a l
i n t e g e r

::= operator [(internal_name)] l ist_of_operand_types
[l i s t _ o f _ p r o p e r t i e s]

+int (addint) integer integer
$Commutative $Associative; {Integer Addition}
+ (add) real real $Commutative; {Addition}
/ (div) real real; {Division}
/ int (d iv int) integer integer; { Integer Div is ion}

6.2 Machine Description

The
whic
mach
they
over
prod
any
macr
whic
cost

MD file
h code
ine regi
h o l d) ,

lap), ho
u c t i o n s ,
needed
os, whic
h comple
s and re

d e s c r i b
i s t o
sters (

the r
w to al

which
con tex t
h descr
t e i n s
g i s t e r s

es the instr
be emitted

what they ar
e l a t i o n s h i p s
locate tempo
are specific
r e s t r i c t i o n

ibe the mach
t r u c t i o n s a

altered as

uction set and machine arc h i t *sc tu re f o r
I t c o n t a i n s s e c t i o n s t o d e fi n e the

e called, how many of each, and what
between the registers (equ iva lence and

raries, and onductions (c o n s i s t i n g o f
ations of what IR patterns t o recogn l z e ,
s on the recognition, and any associated
ine instructions and compo nenlts out o f
re constructed, including space and time
side effects) .

Here is a stripped-down version of our V-Mode MD file:

Representations Macro
^Registers
{ Name How Many

A 1 i n t l 6 nomac ();

^Categor ies
goal

m r i n t l 6

mrreal32

stmt; {The goal nonterminal represents a
source statement.}

integer; {A 16-bit integer operand for a memory
re ference ins t ruc t ion}

real; {A 32-bit real operand for a memory
re ference ins t ruc t ion}

%Ins t ruc t ions
{Category transformations}
mr 16
mr 16
mr
m r i n t l 6

m r n i l 6 ;
m r i l 6 ;
mr 16;
§. int l6 mr;

{One word stack frame and link frame references}
m r n i l 6 : : = s t a c k i n t _ c o n s t

\ RANGE (8, int const.value, 255)
: mr_short_dir T'SB', int_const,

stack.name);
m r i l 6 : : = a d d r e l s t a c k i n t _ c o n s t X

\ RANGE (8, int_const.value, 255)
: mr short dir idx ('SB', int const,

PRIME RD&E RESTRICTED Page 12

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

addrel .name);

{Storing the A register into memory}
g o a l : : = = m r A : sta (mr);

{Calculations leaving their value in the A register}
+int A mrintl6
+int A 1
-int A mrintl6

add_mac (mrintl6);
a1a ();
sub mac (mrint16.text);

/SMacros
{Store the A register in memory}
sta (mem_ref):

$Size 1;
$Text text_op_ = 'STA';

text_args__ = mem_ref.text;
$NL;

$Time 440;
$End;

7 Development Environment

7.1 Coding Standards

A detailed set of coding standards (RBE>D0OSTD. DOC) was developed
early in our project to ensure that all RBE code is written in exactly
the same clear style and with a uniform set of naming conventions.

7 .2 Modular iza t ion

Large programs benefit from being modularized into sets of procedures
that have common areas of functionality. We have developed a way to
modularize SPL programs by defining Procedure modules, Procedure
Inter face modules, Data In ter face modules, and Pr ivate In ter face
modules. All modules are registered on-line in a registration file.
Further information may be found in RBE>D0OSTD. DOC.

PRIME RD&E RESTRICTED Page 13

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

7.3 SDT

We have developed a combination source control and product building
s y s t e m c a l l e d S D T. F u r t h e r i n f o r m a t i o n m a y b e f o u n d i n
RBE>D0ORBE.41 .DOC.

7.4 Design Reviews

In order to ensure overall integrity and quality of our designs, we
have held formal design reviews on all major RBE designs. The results
of reviews are documented on forms stored in a project loose-leaf
notebook. Further information may be found in RBE>D0ORBE. 31 .DOC.

7.5 Code Audits

In order to ensure overa l l ma in ta inab i l i t y, unders tandab i l i t y, and
quality of our source code, we have required formal code audits for all
installed RBE modules. The results of audits are documented on forms
stored in a project loose-leaf notebook. Further information may be
found in RBE>D0ORBE .31 .DOC.

8 Evaluation of RBE Base Level 1

At the conclusion of work on Base Level 1, the RBE project performed an
evaluation of this base level. Our main conclusions are presented in
th is sect ion.

8 .1 Evaluation Areas

The design aspects that we intended to test in Base Level 1 were as
f o l l o w s :

o A working Shaper phase

o Preprocessed tables for code generation

o The basic code selection method

o The register allocation method

o The parsing algorithm

o A revised MD syntax and semantics

PRIME RD&E RESTRICTED Page 14

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

o The structure of the IL

o The idea of field macros

o Arithmetic and assignment operations in the IL

More fundamentally, and in view of the fact that there is not as yet
wide experience with the use of the Graham-Glanville method in code
generator design, we also wanted to answer the following questions:

o Can our method be made to generate high-quality local
code?

o Does its understandability degrade too much when a lot of
special cases are expressed in it?

o Can it be made to operate quickly enough to meet our
marketing requirements?

8.2 Conclusions

With respect to the various design aspects listed above, we have
concluded the following:

1. The Shaper concept works about as efficiently as we had
anticipated. Some problems result from having to convert
from the implicit addressing and datatyping of the TSI
format to the explicit representation for these in the RBE
format .

2. Preprocessed tables for code generation are necessary for
satisfactory performance, but are difficult to implement.
In addition, we found that our preprocessor did not detect
certain kinds of language inadequacies in the MD file;
these problems are found only at compile time and the
error message reflects an obscure internal error condition
that resu l ts .

3. The basic code selection method has been implemented
successfully. A number of problems with it have been
overcome.

4. The register allocation method has been shown to work well
in many cases, although one or two fundamental bugs were
found difficult to understand. Performance, however, has
been a serious l imitat ion, and we concluded i t was
necessary to remove register allocation from the inner
loop of the Decorate phase.

5. The pars ing a lgor i thm (up-down pars ing) was easi ly
implemented and has functioned flawlessly. It is probably
the greatest area of success for the project.

P R I M E R D & E R E S T R I C T E D P a g e 1 5

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

6. MD syntax and semantics were revised (from DEMO),
providing a much greater range of functionality. We found
that the MD file language was not adequate for describing
all aspects of the target machine; the MD language will
need to be extended. An experiment to determine how easy
it is for someone outside of our project to write an MD
file should be one of the first tasks of Base Level 2.

7. The structure of the IL proved adequate for the subset of
IL semantics we selected.

8. The idea of field macros was proved realistic. The Macro
pass is typically the fastest one. We did not, however,
implement the "bit" (binary output) half of macros.

9. Ar i thmet ic and assignment operat ions, inc luding fa i r ly
complicated combinations of addressing modes, have been
successfully implemented in a retargetable fashion.

10. Testing of common subexpression (CSE) support was removed
from the Base Level 1 plan in order to finish in a timely
manner.

With respect to the more fundamental questions listed above (our
risks), we have concluded the following:

1. Our method has been demonstrated to generate high-quality
local code in some limited contexts-. It remains an open
question whether this can also be true when the other
project constraints are met.

2. There is some degradation of the understandability of the
MD file when necessary special cases are expressed in it.
A better answer to how retargetable RBE is will come when
we have an outsider target RBE for a new machine, during
Base Level 2.

3. We have not been able to answer whether RBE can be made to
operate quickly enough to meet our marketing requirements;
we can only say that the current register al location
method, which slows RBE by a factor of 100, is clearly
infeasible. As the prototype was implemented, our feeling
was that it would not be difficult to tune the Shaper,
Select , and Macro passes for adequate performance.
However, the actual performance of these passes has turned
out to be slower than anticipated.

Our overall evaluation is mixed: We have shown the approach taken to
be a reasonable one, but not all of us are satisfied with our progress
in ruling out the basic risks inherent in using such experimental
techniques.

P R I M E R D & E R E S T R I C T E D P a g e 1 6

Report on Base Level 1 of the Retargetable Back End PE-TI-1165

9 Acknowledgments

The Base Level 1 prototype code generator was written by Debby Minard,
David Spector, Lou Gross, and Scott Turner under the continuing
leadership of Scott Turner. Our Section Manager, Ira Topping (who is
unfortunately no longer with Prime), played an indispensable role in
encouraging our excursions into the unknown wilds that lurk behind the
use of state-of-the-art methods, balancing our resulting moments of
panic, and helping us to plan our progress.

10 Bibl iography

[1] M. Ganapathi, Retargetable Code Generation and Optimization Using
A t t r i b u t e G r a m m a r s , P h . D . D i s s e r t a t i o n , U n i v e r s i t y o f
Wisconsin-Madison, 1980.

[2] R. S. Glanvi l le , A Machine Independent Algor i thm for Code
Genera t ion and I t s Use in Reta rge tab le Compi le rs , Ph . D .
dissertation, University of California - Berkeley, December, 1977.

[3] R. S. Glanville and S. L. Graham, A New Method for Compiler Code
Generation, Fifth ACM Symposium on the Principles of Programming
Languages (POPL), January, 1978, p. 231.

[4] S. L. Graham, Table-Driven Code Generation, IEEE Computer, August,
1980, p. 25.

[5] P. K. Turner, Deterministic Parsing with Code Generation Grammars,
File RBE>D0ORBE.8.D0C, March, 1982.

P R I M E R D & E R E S T R I C T E D P a g e 1 7

	Cover Page
	1
	Table of Contents
	2
	3
	Introduction
	Limitations of Base Level 1
	4
	Examples
	5
	Code Selection by Parsing
	6
	7
	8
	An Overview of RBE Methods and Algorithms
	9
	10
	External Tables
	11
	12
	Development Environment
	13
	Evaluation of RBE Base Level 1
	14
	15
	16
	Acknowledgements
	Bibliography
	17

